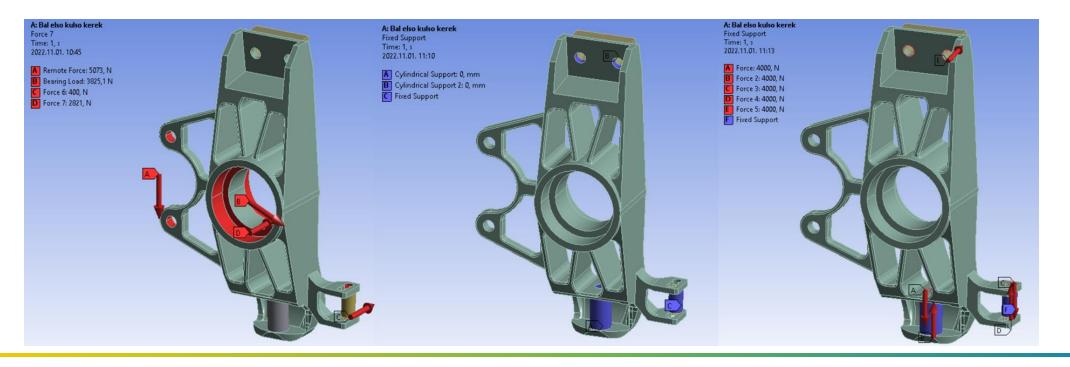

STRUCTURAL OPTIMIZATION OF RACE CAR'S UPRIGHT

- APPLICANT: MIHÁLY CSÁNYI
- CONSULTANT: DR. ILDIKÓ MOLNÁR
- INSTITUTION: ÓBUDA UNIVERSITY
- FACULTY: MECHANICAL ENGINEERING
- E-MAIL: CSANYI.MIHALY00@GMAIL.COM
- PHONE: +36 20 340 9900

PROJECT OBJECTIVE

- In my research, I subjected the upright of the suspension system of the university's Formula Student race car to various development methods
- My primary goal was to reduce the weight of the upright while maintaining and improving its structural strength

MODEL STUCTURE


- ► Parameters of the original uprights:
 - ► Mass: 530 gram
 - Material: Aluminium 6061
 - Density: 2,7 $\frac{g}{cm^3}$
- Applied optimization methods:
 - Generative design
 - Topology optimization (Shape optimization)
- The initial and optimized models were examined in static structural finite element simulation using Ansys program

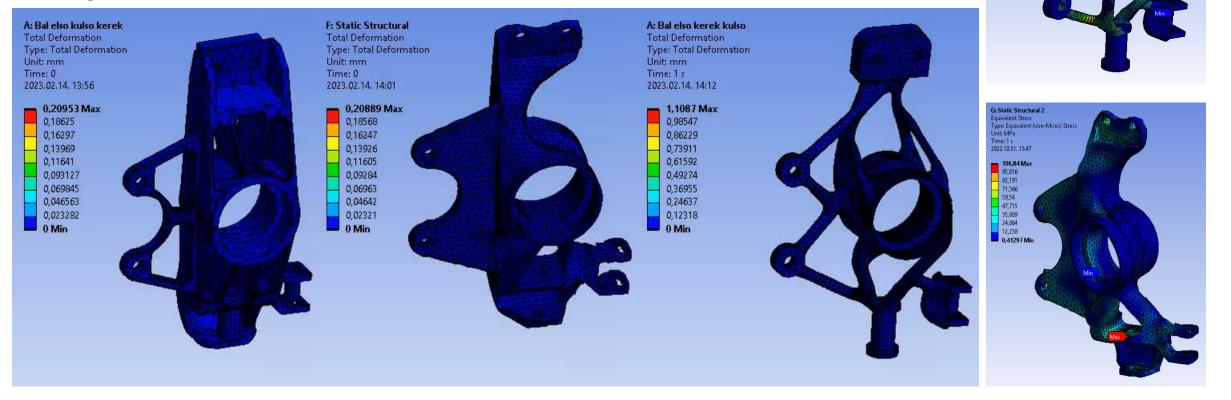
FINITE ELEMENT SIMULATION (ANSYS MECHANICAL)

- ► I examined the maximum deformations and stresses that arise during right-hand turns
- ► The input loads, constraints, and settings were defined based on preliminary simulations

RESULTS

► Mass reduction:

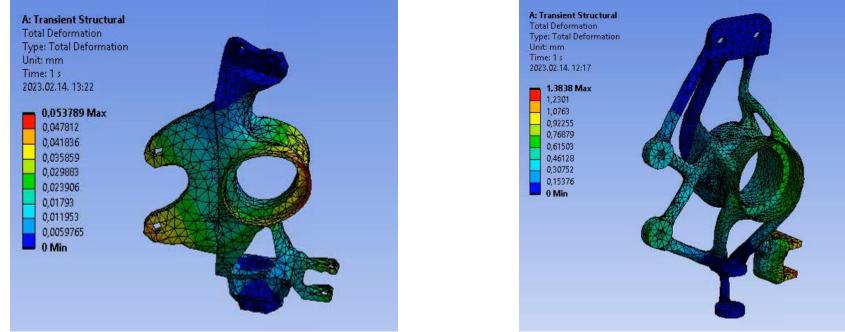
- ► <u>Generative design</u>
 - ► 530 gram -> **327 gram**
 - ► Nearly 40% (38,3%)
- Topology optimization
 - ► 530 gram -> **428 gram**
 - ► Nearly 20% (**19,2%**)


ANSYS	Category	Mass [g]	Material	Maximal stress [Mpa]	Minimal safety	Deformation [mm]
Generative	Left front outer		Titan Al6-			
design	whell	327	V4	569	1,55	1,1
Generative	Right front inner		Titan Al6-			
design	wheel	327	V4	324	2,7	0,78
Generative	Left rear outer		Titan Al6-			
design	wheel	327	V4	551	1,6	1,31
Generative	Right rear inner		Titan Al6-			
design	wheel	327	V4	308	2,87	0,73

ANSYS	Category	Mass [g]	Material	Maximal stress [Mpa]	Minimal safety	Deformation [mm]
Shape	Left front outer		6060			
optimization	whell	428	Aluminium	158	1,74	0,21
Shape	Right front inner		6061			
optimization	wheel	428	Aluminium	107	2,57	0,11
Shape	Left rear outer		6062			
optimization	wheel	428	Aluminium	100	2,75	0,19
Shape	Right rear inner		6063			
optimization	wheel	428	Aluminium	74	3,71	0,11

RESULTS

The videos show the results of the static simulation of the left front uprgiht, while the pictures depict the results of the static simulation of the right front upright



B: Jobb elso kerek belso Equivalent Stress Type: Equivalent (von-Mises) Stres Unit MPa Time: 1 s 2022, 10, 30, 14:41

324,37 Max 268,33 252,29 216,25 180,21 144,17 108,13 72,087 36,048 0,0077982 Min

CONCLUSION

- Safety takes precedence over weight reduction in vehicle development, therefore an upright created through shape optimization is a better choise
- To gain a more precise understanding of the structure of the bodies, I also performed transient finite element simulation, in which I examined the acceleration after full braking in the turn:

