

SIMULATION OF ROOF PANEL MADE FROM FIBER-REINFORCED CONCRETE

NUMERICAL MODELING AND EXPERIMENTAL TESTING

- APPLICANT: VIKTOR FÁBIÁN
- CONSULTANT: DR. ALEKSANDAR LANDOVIĆ
- INSTITUTION: UNIVERSITY OF NOVI SAD
- FACULTY: FACULTY OF CIVIL ENGINEERING, SUBOTICA
- E-MAIL: fabianmviktor@gmail.com
- PHONE: +381 63 159 3594

©eCon Engineering Kft.

ABOUT THE PROJECT

 Investigation of the load-bearing capacity of a roof panel made from fiber-reinforced concrete using ANSYS Mechanical software

 Mechanical properties of the materials used to simulate the behaviour of the roof panels

 Acquiring mechanical properties through experiments - concrete samples in the laboratory

NUMERICAL MODEL SCHEMATIC AND DISCRETISATION

► Static structural analysis

LINEAR ANALYSIS (LI)

for calculating small deformations where material behavior remains linear

(used for exploitation load level)

NON-LINEAR ANALYSIS (NL)

gives a more accurate behaviour considering large deformations

(used for calculation for ultimate load states)

Mesh statistics: the element order is *linear*, and the element size is 0.02 [m]

Concrete / *stiffness behaviour – flexible* / 16014 elements

Rebars / model type – reinforcement / 2071 elements Supports / stiffness behaviour – rigid / 152 elements

The supports are defined as Remote Displacements – one pinned and one roller support, with bonded contact zones between the supports and the concrete panel

- The applied load consists of: self-weight of the panel 950 kN/m² + additional load (load from the first phase of the experiment) 1335 kN/m² = 2285 kN/m²
- Vertical displacement of the model, obtained with the given uniform load is around 28.7 mm

NONLINEAR ANALYSIS - RESULTS

Step Controls			Doto
Number Of Steps	1.		
Current Step Number	1.		setti
Step End Time	1. s		
Auto Time Stepping	On		N/00
Define By	Substeps		INIEC
Initial Substeps	75.		of th
Minimum Substeps	75.		
Maximum Substeps	1000.		assi
Solver Controls			
Solver Type	Program Controlled		AFL
Weak Springs	Off		: : : : : :
Solver Pivot Checking	Program Controlled		
Large Deflection	On		±
Inertia Relief	Off		±
Quasi-Static Solution	Off		
30			
25			
Į ²⁰			

- Details of the analysis settings
- Mechanical properties of the concrete were assigned using the *APDL* command

 Relation between midspan displacement and reaction force

NUMERICAL ANALYSIS VS. EXPERIMENT

ADVANTAGES OF NUMERICAL ANALYSIS:

- with lineal analysis, we can confidently calculate the forces that appear in the structure for different loads
- a nonlinear analysis is necessary to obtain the loadbearing capacity and potential structural behavior at failure

EXPERIMENT:

self-weight (s.w.)

- experiments provide the most accurate results but only if they're done correctly
- but unfortunately they are often more time consuming, financially exhausting and involve risks

CONCLUSIONS

- ► To obtain accurate results from numerical analysis, it is necessary to:
 - use the appropriate material models ensuring the correct behavior of materials such as concrete and steel
 - select the correct finite element types choosing the right modelling elements that are compatible with each other
 - choose good boundary conditions and support connections describing the real-life conditions accurately
- Thanks to the ANSYS Mechanical software, we can achieve results that may not be attainable with experimental methods due to the physical limitations and/or safety issues
- It can be concluded that the software is capable of accurately describing the complex behavior of the fiber-reinforced concrete roof panel, providing us with valuable insights into its performance which would be more difficult to achieve through experimentation alone
- Furthermore, an accurate numerical analysis also eliminates the human factor, thus avoiding potential errors that may occur during experimental testing

