Release 2022 R1 Highlights
Chemkin-Pro / MFL

Highlights of changes for Chemkin-Pro / MFL

- New transient Multiphase Perfectly Stirred Reactor (PSR) for multiphase chemistry
 - Enables many new applications
- New Multiphase Samples demonstrate capabilities
 - Acid runaway using Closed Batch Multiphase Reactor
 - Urea decomposition using Multiphase PSR
- Chemkin UDFs for chemistry can now be used with Chemkin-CFD solver
 - In **Forte** or **Fluent**
- Improved NO_x predictions with Model Fuel Library PERK* mechanisms

*PERK = Pseudo Elementary Reaction Kinetics

Chemkin-Pro offers a framework for kinetics involving 3 phases

- Multiple phases can be included
 - Reactions supported at the interface between phases
- Liquid properties may be specified with several options
- Special formulations for vapor-liquid equilibrium are available for solutions

Transient Multiphase PSR expands Chemkin-Pro applications

- Allows multiple, multiphase inlets
- Allows multiphase chemical kinetics
 - Including phase change (e.g., vaporization)
 - New reaction-rate formulations or solvent chemistry

-

Two new Samples demonstrate Chemkin's Multiphase capabilities

- Acid runaway in a Multiphase 0-D batch reactor
- Urea decomposition in a Multiphase PSR
 - Involves solvent kinetics

New Sample for Industrial safety: simulating runaway processes

- Example: Runaway process of nitric acid (HNO₃) with formic acid (HOCHO)
 - Nitric acid is a popular chemical in industrial processes
 - Cleaning agent, for metal extraction
 - Strong oxidizer may lead to explosive reaction when mixed with certain compounds
 - Reaction time is ~hours at temperatures ~40 °C
- Liquid kinetics mechanism from recent publications:
 - Autocatalysis step from Ando et al., 2021
 - HNO3 dissociation based on other publications

Closed Multiphase Batch Reactor

The acid-runaway simulation captures observed behavior

- Temperature increases due to the rapid rise of HNO₂
- Provides insights into the phase change of products during the reaction

*Data from Ando et al., 2021

Ne

New Sample for simulating urea decomposition

- Includes phase-change and kinetics of urea decomposition
 - Solid urea → Ammonia gas, 20 → 600 °C with a heating rate of 10 °C/min
 - Nitrogen is the carrier gas

^{*} Krum et al. Chem. Eng. Sci. (2021) 230, 116138.

Įι

Urea kinetics, involving 3 phases, are derived from publications

Derived from: Brack et al. Chem. Eng. Sci. (2014) 106, 1-8.

Chemkin kinetics input files

```
MATERIAL/UreaSolution/
BULK/ ureaLiquid/ LIQUID
     urea(1)
     HNCO(1) !Isocynic acid
    biu(1) !Biurate liquid
BULK/ urea s/
                        !Solid phase
                        !Density in q/cm3
             /1.573/
             /1.47/
                        !Biurate
            /1.547/
                        !Triurate
                        !Cyunaric acid
LIQPROPERTIES ALL
 Other proper!!!!!!! Urea decomposition kinetics based on Brack et al. 2016 !!!
 Some propertcya(s) => 3 HNCO
   Use constabiu(1) => urea(1) + HNCO(1)
                                                           1.11e20 0.0 208.23
                                                           3.52ell 0.0
              urea(1) => HNCO(1) + NH3
                                                           2.00e04 0.0
CriticalPrope FORD/ urea(1) 0.7/
AcentricFac=(2 \text{ biu}(1) \Rightarrow \text{ammd}(s) + \text{HNCO}(1) + \text{NH3} + \text{H2O} = 3.64e26 = 0.0 = 257.76
 RefLigEnthalpbiu(1) + HNCO(1) => cya(s) + NH3
                                                           9.40e20 0.0 158.68
RefLiqEntropybiu(1) + HNCO(1) => triu(s)
                                                           1.10e15 0.0 116.97
              triu(s) => cya(s) + NH3
                                                           1.24e18 0.0 194.94
              urea(1) + 2 HNCO(1) => ammd(s) + H2O
                                                           1.27e20 0.0 110.40
             biu(1) => biu(s)
                                                           8.20e26 0.0 271.50
                                                           3.16e09 0.0 122.00
             biu(s) => biu(l)
              biu(s) => 2 HNCO + NH3
                                                           5.63e24 0.0 266.38
              urea(s) => urea(l)
                                                           1.00e15 1.5 160.00
              ammd(s) => ammd(g)
                                                           1.00e14 0.0 201.67
              HNCO(1)=HNCO 1.0 0.0 0.
               VLE/ HENRY 1 26. -4089.26 298.15/
                UNITS/MOLAR ATM/
```


9

Simulation results compare well with experimental observations

- Reduction in mass matches data
 - Forming gas-phase products

- Simulation provides more details:
 - Urea solid-to-liquid phase transition
 - Solid and liquid components vs.
 Temperature

Dashed lines = Liquids Solid lines = Solids

Improved NO_x predictions using Ansys MFL PERK* models

- PERK mechanisms are small (~30-50 species)
 - Targeted for use in large CFD models
- NO_x kinetics were updated for all PERK mechanisms included in the MFL
 - Added pathways with HNO, amino radicals (NH₂)
 - Updated N₂O reactions
- Predictions of NO₂ now agree well with the MFL full, detailed mechanisms

* MFL = Model Fuel Library PERK = Pseudo Elementary Reaction Kinetics

Chemkin-Pro prediction of NO for gas-turbine combustor conditions

Ansys